223 research outputs found

    Investigating periphyton biofilm response to changing phosphorus concentrations in UK rivers using within-river flumes

    Get PDF
    The excessive growth of benthic algal biofilms in UK rivers is a widespread problem, resulting in loss of plant communities and wider ecological damage. Elevated nutrient concentrations (particularly phosphorus) are often implicated, as P is usually considered the limiting nutrient in most rivers. Phosphorus loadings to rivers in the UK have rapidly decreased in the last decade,due to improvements in sewage treatment and changes to agricultural practises. However, in many cases, these improvements in water quality have not resulted in a reduction in nuisance algal growth. It is therefore vital that catchment managers know what phosphorus concentrations need to be achieved, in order to meet the UK’s obligations to attain good ecological status, under the EU’s Water Framework Directive. This study has developed a novel methodology, using within river mesocosms, which allows P concentrations of river water to be either increased or decreased, and the effect on biofilm accrual rate is quantified. These experiments identify the phosphorus concentrations at which algae becomes P-limited, which can be used to determine knowledge-based P targets for rivers. The ability to reduce P concentrations in river water enables algae–nutrient limitation to be studied in nutrient-enriched rivers for the first time

    Establishing the baseline in groundwater chemistry in connection with shale-gas exploration: Vale of Pickering, UK

    Get PDF
    The baseline chemistry of groundwater from two aquifers in the Vale of Pickering, North Yorkshire, has been investigated ahead of a proposal to explore for shale gas, planning permission for which has recently been granted. Groundwater in a shallow aquifer including Quaternary and/or Jurassic Kimmeridge Clay deposits shows compositions distinct from a Corallian (Jurassic) Limestone aquifer, reflecting different lithologies and hydrogeological conditions. Corallian groundwaters along the margins of the vale are controlled by reaction with carbonate, with redox conditions varying according to degree of aquifer confinement. Superficial aquifer groundwaters are confined and strongly reducing, with some observed high concentrations of dissolved CH4 (up to 37 mg/L; Feb 2016 data). This appears to be of mixed biogenic-thermogenic origin but further work is needed to determine whether the source includes a deeper hydrocarbon reservoir contributing via fractures, or a shallower source in the Quaternary or Kimmeridge sediments. The data show a shallow aquifer with a high-CH4 baseline which pre-dates any shale-gas activity

    Mapping eutrophication risk from climate change: future phosphorus concentrations in English rivers

    Get PDF
    Climate change is expected to increase eutrophication risk in rivers yet few studies identify the timescale or spatial extent of such impacts. Phosphorus concentration, considered the primary driver of eutrophication risk in English rivers, may increase through reduced dilution particularly if river flows are lower in summer. Detailed models can indicate change in catchment phosphorus concentrations but targeted support for mitigation measures requires a national scale evaluation of risk. In this study, a load apportionment model is used to describe the current relationship between flow and total reactive phosphorus (TRP) at 115 river sites across England. These relationships are used to estimate TRP concentrations for the 2050s under 11 climate change driven scenarios of future river flows and under scenarios of both current and higher levels of sewage treatment. National maps of change indicate a small but inconsistent increase in annual average TRP concentrations with a greater change in summer. Reducing the TRP concentration of final sewage effluent to 0.5 mg/L P for all upstream sewage treatment works was inadequate to meet existing P standards required through the EU Water Framework Directive, indicating that more needs to be done, including efforts to reduce diffuse pollution

    16S rRNA assessment of the influence of shading on early-successional biofilms in experimental streams

    Get PDF
    Elevated nutrient levels can lead to excessive biofilm growth, but reducing nutrient pollution is often challenging. There is therefore interest in developing control measures for biofilm growth in nutrient-rich rivers that could act as complement to direct reductions in nutrient load. Shading of rivers is one option that can mitigate blooms, but few studies have experimentally examined the differences in biofilm communities grown under shaded and unshaded conditions. We investigated the assembly and diversity of biofilm communities using in situ mesocosms within the River Thames (UK). Biofilm composition was surveyed by 454 sequencing of 16S amplicons (∼400 bp length covering regions V6/V7). The results confirm the importance of sunlight for biofilm community assembly; a resource that was utilized by a relatively small number of dominant taxa, leading to significantly less diversity than in shaded communities. These differences between unshaded and shaded treatments were either because of differences in resource utilization or loss of diatom-structures as habitats for bacteria. We observed more co-occurrence patterns and network interactions in the shaded communities. This lends further support to the proposal that increased river shading can help mitigate the effects from macronutrient pollution in rivers

    Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle

    Get PDF
    The prevailing "puzzle" in watershed phosphorus (P) management is how to account for the nonconservative behavior (retention and remobilization) of P along the land-freshwater continuum. This often hinders our attempts to directly link watershed P sources with their water quality impacts. Here, we examine aspects of within-river retention of wastewater effluent P and its remobilization under high flows. Most source apportionment methods attribute P loads mobilized under high flows (including retained and remobilized effluent P) as nonpoint agricultural sources. We present a new simple empirical method which uses chloride as a conservative tracer of wastewater effluent, to quantify within-river retention of effluent P, and its contribution to river P loads, when remobilized under high flows. We demonstrate that within-river P retention can effectively mask the presence of effluent P inputs in the water quality record. Moreover, we highlight that by not accounting for the contributions of retained and remobilized effluent P to river storm-flow P loads, existing source apportionment methods may significantly overestimate nonpoint agricultural sources and underestimate wastewater sources in mixed land-use watersheds. This has important implications for developing effective watershed remediation strategies, where remediation needs to be equitably and accurately apportioned among point and nonpoint P contributors

    Bone area provides a responsive outcome measure for bone changes in short-term knee osteoarthritis studies

    Get PDF
    Objective: This post-hoc study analyzed 3D bone area from an osteoarthritis (OA) cohort demonstrating no change in cartilage thickness. Methods: 27 women with painful medial knee OA had MRI at 0, 3 and 6 months. Images were analysed using active appearance models. Results: At 3 and 6 months the mean change in medial femoral bone area was 0.34% [95% CI 0.04, 0.64] and 0.61% [CI 0.32, 0.90]. 40% of subjects had progression > SDD at 6 months. Conclusion: In this small cohort at high risk of OA progression, bone area changed at 3 and 6 months when cartilage morphometric measures did not

    Catchment-scale biogeography of riverine bacterioplankton

    Get PDF
    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physiochemical status of the river

    Trace levels of sewage effluent are sufficient to increase class 1 integron prevalence in freshwater biofilms without changing the core community

    Get PDF
    Most river systems are impacted by sewage effluent. It remains unclear if there is a lower threshold to the concentration of sewage effluent that can significantly change the structure of the microbial community and its mobile genetic elements in a natural river biofilm. We used novel in situ mesocosms to conduct replicated experiments to study how the addition of low-level concentrations of sewage effluent (nominally 2.5 ppm) affects river biofilms in two contrasting Chalk river systems, the Rivers Kennet and Lambourn (high/low sewage impact, respectively). 16S sequencing and qPCR showed that community composition was not significantly changed by the sewage effluent addition, but class 1 integron prevalence (Lambourn control 0.07% (SE ± 0.01), Lambourn sewage effluent 0.11% (SE ± 0.006), Kennet control 0.56% (SE ± 0.01), Kennet sewage effluent 1.28% (SE ± 0.16)) was significantly greater in the communities exposed to sewage effluent than in the control flumes (ANOVA, F = 5.11, p = 0.045) in both rivers. Furthermore, the difference in integron prevalence between the Kennet control (no sewage effluent addition) and Kennet sewage-treated samples was proportionally greater than the difference in prevalence between the Lambourn control and sewage-treated samples (ANOVA (interaction between treatment and river), F = 6.42, p = 0.028). Mechanisms that lead to such differences could include macronutrient/biofilm or phage/bacteria interactions. Our findings highlight the role that low-level exposure to complex polluting mixtures such as sewage effluent can play in the spread of antibiotic resistance genes. The results also highlight that certain conditions, such as macronutrient load, might accelerate spread of antibiotic resistance genes

    High-frequency water quality monitoring in an urban catchment: hydrochemical dynamics, primary production and implications for the Water Framework Directive

    Get PDF
    This paper describes the hydrochemistry of a lowland, urbanised river-system, The Cut in England, using in situ sub-daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190,000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Though 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in-stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. This article is protected by copyright. All rights reserved

    Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK)

    Get PDF
    Potential increases of phytoplankton concentrations in river systems due to global warming and changing climate could pose a serious threat to the anthropogenic use of surface waters. Nevertheless, the extent of the effect of climatic alterations on phytoplankton concentrations in river systems has not yet been analysed in detail. In this study, we assess the impact of a change in precipitation and temperature on river phytoplankton concentration by means of a physically-based model. A scenario-neutral methodology has been employed to evaluate the effects of climate alterations on flow, phosphorus concentration and phytoplankton concentration of the River Thames (southern England). In particular, five groups of phytoplankton are considered, representing a range of size classes and pigment phenotypes, under three different land-use/land-management scenarios to assess their impact on phytoplankton population levels. The model results are evaluated within the framework of future climate projections, using the UK Climate Projections 09 (UKCP09) for the 2030s. The results of the model demonstrate that an increase in average phytoplankton concentration due to climate change is highly likely to occur, with the magnitude varying depending on the location along the River Thames. Cyanobacteria show significant increases under future climate change and land use change. An expansion of intensive agriculture accentuates the growth in phytoplankton, especially in the upper reaches of the River Thames. However, an optimal phosphorus removal mitigation strategy, which combines reduction of fertiliser application and phosphorus removal from wastewater, can help to reduce this increas
    • …
    corecore